
A FORMAL METHOD FOR THE ABSTRACT SPECIFICATION OF SOFTWARE

John McLean

Center for High Assurance Computer Systems
Naval Research Laboratory

Washington, D.C. 20375

An intuitive presentation of the trace method for the abstract specification of software contains sample
specifications, syntactic and semantic definitions of consistency and totalness, methods for proving
specifications consistent and total, and a comparison of the method with the algebraic approach to
specification. This intuitive presentation is underpinned by a formal syntax, semantics, and derivation sys-
tem for the method. Completeness and soundness theorems establish the correctness of the derivation sys-
tem vis −a −vis the semantics, the coextensiveness of the syntactic definitions of consistency and totalness
with their semantic counterparts, and the correctness of the proof methods presented. Areas for future
research are discussed.

1. INTRODUCTION

W. Bartussek and D. L. Parnas introduced the trace method for the abstract specification of software
in [1], at least partly, in response to Parnas’ earlier observation that there is no "precisely defined notation
for writing abstract specifications...that I feel to be useful" [16, p863]. The method is useful, but as
presented in [1], it falls short of Parnas’ goal of being "precisely defined". A formal description of the
method is necessary for the proof of assertions about trace specifications and their implementations and for
the design of software support for the specification user.

This report contains an intuitive presentation of the trace method, syntactic and semantic definitions
of consistency and totalness,1 methods for proving specifications consistent and total, and a comparison
between the trace method and the algebraic approach to abstract specification. Following this presentation
is a formal description that serves as a foundation for the method: a syntax, a semantics, and a set of infer-
ence rules for trace specifications. Soundness and completeness theorems establish the correctness of the
rules of inference vis-a-vis the semantics, the coextensiveness of syntactic definitions of consistency and
totalness with their semantic counterparts, and the correctness of the proof methods presented. A conclud-
ing section discusses areas for future research.

Strictly speaking, the report is self-contained with respect to both formal logic and the trace method.
Nevertheless, some background in logic, as, e. g., can be obtained from [11], would be useful, as would an
informal understanding of the trace method, as presented in [1]. An elementary knowledge of set theory,
as, e. g., given in [14], is assumed.

2. AN INTUITIVE PRESENTATION OF TRACE SPECIFICATION

This section contains an intuitive presentation of the trace method that serves as an introduction to
and a motivation for the formal description that follows. An informal discussion of the syntax and seman-
tics for the method precedes discussions of consistency and totalness and a comparison of the method with
the algebraic method of specification. Although the correctness of the techniques described here for rea-
soning about a specification presupposes the foundation that follows, the techniques can be understood and
used without a knowledge of their formal underpinnings.

2.1. Syntax and Semantics

The trace method is a formal method for the abstract specification of software, where "software" is
liberally construed to cover any program (procedure) or set of programs. As such, in so far as the terms
"abstract data type" and "module" are used to refer to sets of related programs, it is a method for their
hhhhhhhhhhhhhhhhhh
1. I use total in the same sense that Guttag uses sufficiently-complete in [5]. The reason for the change in terminology is
that completeness already has (several) established senses in logic circles. Giving it one more simply breeds confusion.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1984 2. REPORT TYPE

3. DATES COVERED
 00-00-1984 to 00-00-1984

4. TITLE AND SUBTITLE
A Formal Method for the Abstract Specification of Software

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Laboratory,Center for High Assurance Computer
Systems,4555 Overlook Avenue, SW,Washington,DC,20375

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

- 2 -

specification as well.

Being formal does not distinguish the trace method from many other methods for specifying
software. However, being abstract does. A trace specification describes only those features of a program
that are observable; it specifies what the program does without describing an algorithm for doing it. If the
use of a particular algorithm is required, then this is included as a constraint to, not as a part of, the
specification.2 In this respect, it differs from procedure specification methods that are based on "operational
definitions" and abstract data type specification methods that are based on "abstract models" [10]. For our
purposes, the most important feature of these latter classes of methods is that they specify software by giv-
ing a paradigm implementation.

Consider a module that takes an integer array as input and returns the index of a maximal element in
the array. A trace specification states only that the return value indexes an array element that is greater
than or equal to any other element in the array. It leaves the method for finding this value completely open.
In contrast to this, both the operational definition and the abstract model specification methods specify the
module by giving a paradigm implementation such as the one below.

x :=1

for i =2 to size (array)

if array (i)>array (x) then x :=i

return(x)

The trace specification has two advantages over the latter.3 First, the former specification does not
contain clutter; it contains neither artifacts from a particular language for presenting algorithms nor
artifacts from a particular algorithm. This makes it more perspicuous and easier to handle in proofs about
implementations. More importantly, by not having artifacts from a particular algorithm, it is free from a
whole class of potential misunderstandings: those that result from the attempted gleaning of its essential
features from a mass of extraneous details. Although the latter specification may be intended to allow any
program that is functionally equivalent to the one given, it is not clear what functionally equivalent means
here. For example, when there is more than one maximal element in an array, it is not clear from the latter
specification whether the programmer is required to return the smallest number that indexes a maximal ele-
ment or not. This point can be clearly seen by noting that if the program were required to return the smal-
lest index, then the specification of this new program would be identical to the specification of the original.
The trace specification, however, would contain a new assertion that reflects the additional requirement.

Trace specifications are also conducive to good programming practice. By requiring program output
to be specified solely in terms of input, the trace method not only forces designers to make any information
shared by two or more modules part of an explicit interface, it also discourages unnecessary modular cou-
pling by focusing the designer’s attention on such shared information. This makes independent implemen-
tation of modules possible and leads to understandable software that is easier to maintain [15].

In the trace specification method, programs are specified by describing three properties they possess:

(1) What do the access procedures of the programs look like, i. e., what are their names, their
parameter types, and their return values types if any? These properties are given by sentences
of the form proc : parameter 1 type ... parametern type --> return value type .

(2) Which sequences of procedure calls (called traces) are legal , i. e., are not regarded as being in
error? These are given by assertions of the form L (trace).

(3) What is the output of legal traces that end in a function call? This value is denoted by
V (trace).

To make specifications more readable, we introduce a relational predicate into the language. If two
traces agree on (1) current legality, and (2) legality and return value for future program behavior, then we
say they are equivalent and write trace 1≡trace 2.
hhhhhhhhhhhhhhhhhh
2. See [6,7] for a discussion of the problem of presenting algorithmic constraints in an abstract specification or require-
ments document.
3. See [16] for a general discussion of the advantages of abstract specification.

- 3 -

Note that in giving the parameter types of a procedure call, we need not limit the programmer
unnecessarily since the parameter types can be as abstract as we please. For example, we may specify the
parameter type of a procedure as set early in the design phase and replace this parameter type by vector if
we choose to use a vector representation for sets. We can later replace the latter parameter by array if we
desire. Similarly, we are not restricted to a fixed number of parameters for a given procedure. As origi-
nally described [1, 12], the trace method followed other methods for software specification in demanding a
rigid syntax for procedure calls. Each procedure of a specified module had to take a specified number of
parameters of a fixed type. However, this requirement does not fit in well with the current state of pro-
gramming language research and was strained by built-in procedures even of traditional languages, e. g.,
PL/1 stream edited I/O procedures which take an arbitrary number of arguments. The trace method as
described in this paper allows for a more flexible syntax for procedure calls by including schemata.

As an example, consider the following specification of a stack module that permits multiple pushes
and pops. The module contains three procedures: PUSH takes an arbitrary positive number of some, as of
yet, undetermined type of object as parameters but returns no value; POP either takes either no parameter
or a positive integer as a parameter, but returns no value; and TOP takes no parameters but returns an
object. The syntax of the module is specified thus.

PUSH : obj . . . obj

POP : [int]

TOP : --> obj

The syntax for PUSH is specified by a schema that represents an infinite number of sentences: viz.
PUSH : obj , PUSH : obj obj , etc. Each one of these sentences describes a legal call on PUSH . The pro-
grammer is free to treat PUSH as a single procedure that takes an unspecified number of parameters or as a
set of procedures, each of which takes a different number of parameters from the rest. Similarly, POP is
specified by a schema that represents two sentences: POP : and POP : int.

The semantics of the module consists of eight assertions describing the module’s behavior: (1) if a
series of procedure calls has not resulted in an error, then PUSH can be legally called with any object
parameter; (2) calling TOP does not result in an error if and only if calling POP does not; (3) calling
PUSH with multiple parameters is equivalent to calling PUSH with each parameter individually, leftmost
first; (4) POP (1) is equivalent to POP ; (5) calling POP with n as a parameter is equivalent to calling
POP n times; (6) calling PUSH followed by POP does not affect the future behavior of the module; (7) if
TOP can be legally called, then calling it does not affect the future behavior of the module; and (8) the
value of any legal series of procedure calls ending in PUSH followed by TOP is the parameter of the last
PUSH . These assertions are symbolized as axioms in an extension of predicate calculus.

(1) L (T) --> L (T.PUSH (o))

(2) L (T.TOP) <--> L (T.POP)

(3) T.PUSH (o 1, . . . , on)≡T.PUSH (o 1).PUSH (o 2, . . . , on)

(4) T.POP ≡T.POP (1)

(5) i >1 --> T.POP (i)≡T.POP.POP (i −1)

(6) T ≡T.PUSH (o).POP

(7) L (T.TOP) --> T ≡T.TOP

(8) L (T) --> V (T.PUSH (o).TOP)=o

Note the use of --> and <--> for if then and if and only if respectively. The connectives ¬, & , and ν
are also allowed for not, and, and or , respectively, as well as the existential quantifier (ii

i
cα) for

there exists α and the equality symbol, =. The less than symbol, >, is assumed to be previously defined.
The variable i is assumed to range over integers, the variables o ,o 1,o 2,... over objects, and the variable T
over traces (including the empty trace , e , which denotes the null sequence of procedure calls). Any
occurrence of a variable that is not within the scope of an existential quantifier is assumed to be universally
quantified. Hence, for example, the first assertion says that for any trace T and for any object o , if T is
legal then so is T followed by PUSH (o). Note that the dot (.) concatenates procedure calls. Assertion (3)

- 4 -

is a schema that tells how to reduce each of the possible calls involving PUSH that contains more than one
parameter. As such, it really makes an infinite number of assertions, each involving a finite number of
parameters. A formal presentation of the language is contained in the section of this paper on formal syn-
tax.

As an example of how to use the specification to make inferences about an implementation’s
behavior, consider the trace PUSH (tom , jerry).POP.TOP . Substituting the empty trace for T in assertion
(3) allows us to conclude that PUSH (tom , jerry).POP.TOP is equivalent to the sequence
PUSH (tom).PUSH (jerry).POP.TOP . Using assertion (6), we can conclude that
PUSH (tom).PUSH (jerry).POP is equivalent to PUSH (tom), and hence, that the original trace is
equivalent to PUSH (tom).TOP . Using assertion (8) and the assumption that the empty trace is always
legal, we can conclude that the original trace returns the value tom . A formal derivation system for reason-
ing about a module’s behavior is contained in the section of this paper on formal deduction.

2.2. Consistency

To say that a specification is consistent is, intuitively, to say that it does not contain a logical con-
tradiction. The problem with an inconsistent specification is that since anything follows from a contradic-
tion, no implementation could do all that the specification requires. The specification places too many con-
straints for an implementation to be possible.

There are two ways of formally explicating this intuitive notion of consistency. One is to call a
specification consistent if and only if a contradiction cannot be derived from it. This definition is totally
syntactic in that it does not depend on the meaning of the symbols used in a specification, but only on the
formal definition of derivation given in the section on deduction. Hence, we call a specification that is
consistent in this sense syntactically consistent . The second way is to call a specification consistent if and
only if it has a model . This definition is semantic in that one must give the meanings of the symbols
involved in the specification language to state formally what it is to be an acceptable model. This is done
in the section of this paper on formal semantics, and the resulting explication of consistency is called
semantic consistency .

Each definition suggests its own method for proving consistency: showing that a contradiction cannot
be derived, for syntactic consistency, and showing that a model exists, for semantic consistency. Further,
each of these methods has its own set of circumstances in which it is better than the other. This stems from
the fact that ceteris paribus, it is more enlightening to demonstrate something constructively than noncon-
structively, and the fact that a constructive proof is easier to evaluate. If I give a model for a specification,
there can be no doubt that the specification is consistent, and further, I gain information about the
specification. It is not nearly so easy to convincingly establish directly that no derivation of a contradiction
is possible, and even if I could, I gain little information about the specification. Hence, model building is
the standard method for proving consistency. On the other hand, the primary method for proving a
specification inconsistent is to derive a contradiction from it. The reason is again that deriving a contradic-
tion from a specification establishes inconsistency much more clearly and gives much more insight than an
argument that no model exists. Hence, it is desirable to be able to work with both definitions.

This raises a technical point. If we are to have the benefit of two concepts of consistency, we must
establish that the two concepts are coextensive, i. e., that a specification is syntactically consistent if and
only if it is semantically consistent. Although the coextensiveness of these two concepts (and their
corresponding methods for proving consistency) is implicitly assumed by virtually all writers in the area of
software specification, it must be established for each specification technique. Giving a model establishes
the impossibility of deriving a contradiction (and vice versa) only if the model and the derivation system
correspond. That the model and derivation system given in this paper correspond is proven from two
theorems: a soundness theorem shows that an assertion is derivable only if it is true in all models, and a
completeness theorem shows that an assertion is derivable if it is true in all models. The remainder of our
discussion of consistency in this section consists of intuitive applications of these two theorems.

Consider the following specification for a module that manipulates multiple integer stacks. As
before, we have the procedures PUSH , POP , and TOP , but here, each one operates on the stack whose
name is passed to to the procedure as a parameter. This module also has a new procedure DEPTH which
returns the number of elements in the named stack. Number theory is assumed, as is the predefined data

- 5 -

type name , consisting of the set of finite character strings. The variables a and b are assumed to be
integers, and r and s are assumed to be names.

Syntax:

PUSH : int name

POP : name

TOP : name --> int

DEPTH : name --> int

Semantics:

(1) L (T) --> L (T.PUSH (a ,s))

(2) L (T.TOP (s)) <--> L (T.POP (s))

(3) T.DEPTH (s)≡T

(4) T.PUSH (a ,s).POP (s)≡T

(5) r ≠s --> T.PUSH (a ,s).PUSH (b ,r)≡T.PUSH (b ,r).PUSH (a ,s)

(6) L (T.TOP (s)) --> T.TOP (s)≡T

(7) L (T) --> V (T.PUSH (a ,s).TOP (s))=a

(8) L (T) --> V (T.PUSH (a ,s).DEPTH (s))=V (T.DEPTH (s))+1

(9) (L (T) & r ≠s) --> V (T.PUSH (a ,s).DEPTH (r))=V (T.DEPTH (r))

(10) V (DEPTH (s))=0

This specification is simpler than the previous stack specification in not allowing multiple pushes or
pops, but it is more complicated in that it contains the new assertions (3), (5), (8), (9), and (10). Assertion
(3) tells us that calling DEPTH does not affect the stack, and assertion (5) tells us that if we are pushing
integers on different stacks, then the order of the pushes is irrelevant. Assertions (8)-(10) tell us how to
compute the value of traces ending in DEPTH .

The condition that r ≠s is needed in the antecedent of assertions (5) and (9). If, for example, asser-
tion (5) were replaced by the simpler assertion T.PUSH (a ,s).PUSH (b ,r)≡T.PUSH (b ,r).PUSH (a ,s), we
could derive a contradiction from the specification, given number theory, as follows. The new assertion
would allow us to conclude that PUSH (3,st).PUSH (5,st) is equivalent to PUSH (5,st).PUSH (3,st). But
by assertion (7), PUSH (3,st).PUSH (5,st).TOP (st) returns the value 5 and
PUSH (5,st).PUSH (3,st).TOP (st) returns the value 3. From the equivalence between the two traces, we
can derive 5=3, and from number theory, we can derive 5≠3. Hence, we can derive the contradiction
5=3 & 5≠3.

Proving that the original specification has a model is a bit more difficult. Intuitively, a model for a
trace specification consists of a tuple of domains D and an interpretation function I that assigns to each
meaningful element of the trace language an element in one of D ’s domains. Here, D consists of three
domains: TRACE , the set of (possibly null) character strings that form sequences of procedure calls, con-
tains denotations for traces; INT, the set of integers, contains denotations for integer constants; and NAME ,
the set of finite character strings, contains denotations for name constants. Hence, TRACE and NAME
both consist of character strings. A string such as "PUSH(6,st)TOPPOPDEPTH" can appear in either,
although it probably serves as a denotation only in the former.

The interpretation function, I , assigns to each variable-free trace the corresponding character string
in TRACE , to each integer constant the corresponding integer in INT, and to each name constant the
corresponding character string in NAME . For example, I assigns to DEPTH (st).TOP , 5, and stack 1, the
denotations "DEPTH(st)TOP", the integer 5, and "stack1" respectively. The denotation of language ele-
ment φ, is written I [φ]. Hence, in the model we are constructing now, I [stack 1]="stack1".

To translate assertions in the specification into assertions about domain objects, we must also fix the
denotations of relation symbols and function symbols. Let ι range over integers and σ over character
strings. I [+] is the addition function and I [=] is the equality predicate. I [L] is the predicate over strings in
TRACE that is true of a string x if and only if for any s ∈ NAME and any substring φ of the form

- 6 -

"POP(s)" or "TOP(s)", there are more substrings to the left of φ in x of the form "PUSH(ι,s)" than of the
form "POP(s)". I [V] is a function f from those strings in TRACE of which the predicate I [L] is true and
that end in "TOP(σ)" or "DEPTH(σ)", to the integers. For every string x in the domain of f , f (x)=n if
and only if there is a s ∈ NAME such that (1) x ends in "DEPTH(s)", and n is the number of substrings of
the form "PUSH(ι,s)" in x minus the number of substrings of the form "POP(s)" in x , or (2) x ends in
"TOP(s)" and scanning x from right to left, the substring "PUSH(n ,s)" is the first occurrence of a sub-
string of the form "PUSH(ι,s)" in x that cannot be paired with a previous, unpaired substring of the form
"POP(s)". Note that we do not have to assign a denotation to the equivalence symbol since it is a defined
term.

The last step in giving the model is to define what it means for any assertion to be true. An assertion
containing no connectives or variables is true if and only if the corresponding assertion in the model is true.
An assertion containing variables is true if and only if the corresponding assertion is true for every object
in the appropriate domain. An assertion containing Boolean connectives is true if and only if the Boolean
combination of the corresponding element assertions is true.

Although the interpretation just given is trivial, it can serve as a model for an implementation that
works, not in the standard way of mimicking stacks with arrays, but by forming a character string that
represents the history of procedure calls made to the module, and using this string to calculate all needed
return values. Hence, it gives us a new tool for reasoning about the module’s behavior. If we wrongly
assumed that DEPTH returned, not the present depth of the stack, but rather the maximum depth that the
stack had attained in its history, we would discover our mistake. If we had proven the specification con-
sistent by syntactic means, however, this fact never would have come to light. Further, such implementa-
tions can be constructed mechanically. Hence, they can serve as a basis for rapid prototyping as described
in [3].

All models contained in this paper are similar to the one just given in that they regard an implemen-
tation as a transform on a string of procedure calls. This is a useful way to view software when reasoning
about module behavior, specification consistency, and as we shall see in the next section, specification
totalness. The reader who has no understanding of the formal underpinnings of this approach, can
nevertheless use the technique to great benefit.

2.3. Totalness

An inconsistent specification fails by placing too many constraints on its intended implementation.
A specification can also fail by placing too few constraints, leaving the programmer in the air about module
behavior. A specification is total if it asserts what its implementation should do for all legal input. For an
abstract specification, this is the same as asserting what output should be generated by each legal string of
procedure calls that ends in a function call.

As for consistency, there is a syntactic and a semantic formalization of this property. A trace
specification is syntactically total if for every variable-free trace T that ends in a function call, we can
derive L (T) only if there is some constant a such that we can derive V (T)=a . That is, if such a trace is
legal, then it returns a specified value. A trace specification is semantically total if for every variable-free
trace T such that L (T) is true in all models, there is a constant a such that V (T)=a is true in all models.4

That is, all implementations of a semantically total specification are indistinguishable as far as observable
behavior is concerned.

As for consistency, it is convenient to have two different concepts of totalness. The semantic con-
cept is easier to work with than the syntactic concept in proving that a specification is not total since it is
easier to show that there are two models that disagree on what to assign V (T) than it is to show that there is
no derivation of the form V (T)=a . However, the syntactic concept is generally easier to deal with in prov-
ing totalness. We must, of course, prove that the two concepts are coextensive. As for consistency, their
coextensivenes follows from the soundness and completeness theorems.
hhhhhhhhhhhhhhhhhh
4. Note that the two definitions of totalness bring with them syntactic and semantic definitions of legality. A trace T is syn-
tactically legal if L(T) is derivable; it is semantically legal if L(T) is true in all models. The completeness and soundness
theorems establish that a trace is syntactically legal if and only if it is semantically legal.

- 7 -

In this section we will consider a semantic proof that the following keysort specification, adapted
from a similar one suggested by Parnas, is not total.5 The module stores an unbounded number of ordered
pairs of integers, which are inserted by the procedure INSERT . The first member of each ordered pair acts
as a key for the procedures FRONT , which returns (without removing) a pair with a minimal key, and
REMOVE , which removes a pair with a minimal key. The data type pair is the set of integer ordered
pairs, i. e, pair ={(x ,y): x ∈int & y ∈int}.

Syntax:

INSERT : int int

REMOVE :

FRONT : --> pair

Semantics:

(1) L (T) --> L (T.INSERT (a ,b).REMOVE)

(2) L (T.FRONT) <--> L (T.REMOVE)

(3) L (T.FRONT) --> T.FRONT ≡T

(4) V (T.INSERT (a ,b).FRONT)=(a ,b) -->
(T.INSERT (a ,b).REMOVE ≡T ν
(V (T.FRONT)=(a ,b) & T.INSERT (a ,b).REMOVE ≡T.REMOVE.INSERT (a ,b)))

(5) V (T.INSERT (a ,b).FRONT)≠(a ,b) -->
T.INSERT (a ,b).REMOVE ≡T.REMOVE.INSERT (a ,b)

(6) V (INSERT (a ,b).FRONT)=(a ,b)

(7) (V (T.FRONT)=(a ,b) & V (T.INSERT (a* ,b*).FRONT)=(x ,y)) -->
((a <a* & x =a & y =b) ν
(a >a* & x =a* & y =b*) ν
(a =a* & x =a & (y =b ν y =b*)))

Assertion (7) requires that FRONT returns the pair with the smallest key if there is one, or a pair
with that key if there is more than one. As such, the behavior of the module is nondeterministic when there
is no unique pair with the smallest key. Assertion (4) requires that REMOVE removes the pair that
FRONT would return if it were applied to the same trace.

We show that the specification is not total by giving two models, M and M*, and showing that there
is a legal, variable-free trace T ending in a function call and a constant a such that V (T)=a in M, and
V (T)≠a in M*. We will use x and y as integer variables in describing the model.

As in the stack example, each model consists of an interpretation function I from the specification
language to a tuple of domains D , whose elements, TRACE and INT , are as before. M and M* also agree
on assigning to L the predicate that is true of all and only those strings in TRACE such that to the left of
every "REMOVE" or "FRONT" in the string there are more strings of the form "INSERT(x ,y)" than of the
form "REMOVE".

For M, I [V] depends on the normalizing algorithm defined below. It takes as input strings of pro-
cedure calls and deletes "INSERT(x ,y)"-"REMOVE" pairs where the insert is the rightmost occurrence of
an "INSERT(x ,y)" that is both to the left of the "REMOVE" and has a minimum key. The parameter pair
of the last "INSERT" deleted is returned.

NORMAL(string) RETURNS(pair):

1. If I [L] is not true of string , then abort.

2. Remove each occurrence of "FRONT" from string .

3. While string contains at least one "REMOVE" do

hhhhhhhhhhhhhhhhhh
5. It should be noted that the specification is not total in order to make the module’s actions nondeterministic, as described
below, when there is no smallest key.

- 8 -

(a) Find the leftmost string of the form "REMOVE" in string , and assign to A the string up
to (but not including) this "REMOVE" and to B the string following (but not including)
this "REMOVE".6

(b) Assign to min the smallest key contained in a string of the form "INSERT(x ,y)" that
occurs in A .

(c) Delete the rightmost "INSERT(x ,y)" from A such that x =min , and assign to pair the
parameter pair of that "INSERT".

(d) Assign to string the concatenation of A with B .

4. RETURN(pair)

I [V] is a function f from those strings that I [L] is true of and that end in "FRONT" to ordered pairs
of integers (x ,y). f (string)=(x ,y) if and only if when after the rightmost "FRONT" of string has been
replaced by "REMOVE", NORMAL(string) returns (x ,y).

For M*, we use the algorithm NORMAL*, which is exactly like NORMAL except that the word
rightmost in step (c) of statement (3) is changed to lef tmost . I* [V] is defined exactly like I [V] except
that NORMAL* is used instead of NORMAL. To see that the keysort specification is not total, one must
merely note that if we consider T =INSERT (1,5).INSERT (1,6).FRONT then V (T)=(1,6) in M and
V (T)=(1,5) in M*.

For proving specifications total, there is a standard semantic approach that suggests itself. Call a
specification theory −complete if for every assertion A in the specification language, either A or ¬A is
derivable. If we can show that a specification is theory-complete and give one model in which for every
legal, variable-free trace T ending in a function call, V (T)=a is true for some constant a , then it follows
that the specification is total. What is appealing about this approach is that there are standard methods for
proving theory-completeness [2]. However, the approach is limited in that no specification containing first
order number theory is complete in this sense [4].

Nevertheless, there is a straight forward method to prove a specification total. Call the number of
procedure calls contained in a variable-free trace the length of the trace. We prove a specification total if
we establish by induction on trace length that for any legal, variable-free trace T ending in a function call,
there is a constant a such that V (T)=a is derivable. As an example, I will use this approach to prove the
keysort specification total when we replace assertion (7) of the specification by the following:

(7*) (V (T.FRONT)=(a ,b) & V (T.INSERT (a* ,b*).FRONT)=(x ,y)) -->
((a <a* & x =a & y =b) ν (a ≥a* & x =a* & y =b*))

Note that for any trace T of the form INSERT (x 1,y 1).INSERT (xn ,yn).FRONT , where each xi

and yi is an integer constant, there is a derivation of V (T)=a for some ordered-pair constant a using
axioms (6) and (7*).7 Hence, totalness follows if we prove that each variable-free, legal trace is equivalent
to a variable-free sequence of INSERT ’s.

Assuming that any variable-free trace S of length less than n such that L (S) is derivable is
equivalent to a variable-free sequence of INSERT ’s, we prove that any such trace T of length n is
equivalent to a variable-free sequence of INSERT ’s. We assume that T is of the form S.C where S is a
sequence of variable-free INSERT ’s and C is a procedure call. C can be of 3 possible forms.

(1) IF C is INSERT , we are done.

(2) If C is FRONT , then by assertion (3) T is legal only if T ≡S . Since S is of the required form
by hypothesis, we are done.

hhhhhhhhhhhhhhhhhh
6. Note that B may be assigned the null string.
7. It may not be clear how to apply assertion (7*). Our deductive system contain axioms that allow us to infer that an initial
segment of any legal trace is legal and that there is a value for any legal trace that ends in a function call. Since the empty
trace is legal, we can use assertions (1) and (3) to prove that any sequence of INSERT’s followed by a FRONT is legal.
Hence, we can always infer that there is a value for such a sequence. Proving totalness consists in showing that there is a
constant value that is derivable for a legal trace that ends in a function call if the trace is variable-free.

- 9 -

(3) IF C is REMOVE , then by assertion (2), T is legal only if S.FRONT is legal. Further, S can-
not be empty.8 Using assertions (4) and (5) we can eliminate the REMOVE .

2.4. Comparison with the Algebraic Approach

The trace method has much in common with the algebraic approach to specification, as epitomized,
for example, in [5]. They are both methods of abstract specification and therefore, seem much alike when
compared to such alternatives as the operational definition and abstract model approaches discussed earlier.
Further, the generality of the term algebraic allows the development of algebraic models that are formally
equivalent to the trace method.9

Nevertheless, the reader will notice two differences between the trace method for specifying
software modules and the algebraic approach. First, the so-called type of interest is not necessary in a
trace specification. For example, within the stack specification, the word stack is never used. As such, the
specification corresponds more closely to how the user actually sees a stack module, viz . a set of access
procedures with certain properties, than the algebraic method, which gives relations between the possible
values stacks can assume. Treating stacks as values renders it necessary, even in the single stack case, to
regard each procedure as taking a stack as a parameter and any procedure that affects the inner state of the
module (called O − f unctions in [1]) as returning a stack. There is certainly no reason for the procedures in
an implementation of the module to contain such an abundance of parameters and return values, yet if the
user is given the freedom to leave certain parameters out of an implementation, we lose the advantages of
abstract specification discussed earlier.

In trace specification designers are free to use parameters of an abstract type stack if they desire, but
they are also free to replace this type by a concrete representation if necessary. This is desirable since most
real-world programming languages do not allow for the free creation of new data types. However,
designers using algebraic specifications cannot bind their abstract data objects to a particular representa-
tion. Hence, the interface is ambiguous in that the programmer must decide whether to treat the parameter
as a name or as one of several possible data objects, e. g., an array. Choosing to represent the parameter as
a data object would be particularly bad since it would force the programmer to represent each stack as a
separate data object, ruling out implementations of the type described in this paper or that use, e. g., a sin-
gle array that stores both names and integers. The programmer faces similar problems in dealing with the
artificial error values the algebraic approach needs for its stacks to assume given bad input and the
unnecessary functions it needs to start, i. e., map an empty value space to an initial stack.

A slightly different problem that results from treating stacks as values is that it obliterates the distinc-
tion between a function call and the value returned by that call. This renders it impossible to represent a
sequence such as call 1.call 2 except by treating call 1 as a parameter of call 2.10 This is not only unintuitive
for many implementations, it makes it impossible to represent sequences such as
PUSH (i ,s).TOP (s).TOP (s) since the first occurrence of TOP returns an integer while the second
occurrence needs a stack for a parameter.

The second difference between the two methods concerns the languages involved. The trace method
makes free use of first order logic with identity while most algebraists prefer a more restrictive languages
that does not contain an existential quantifier. As such, the trace language has more expressive power. An
example occurs in the formalization that follows where one axiom of the deductive system states that any
legal trace expression ending in a function call must return some value, without saying what that value is.
This axiom cannot be written without an existential quantifier, and hence, is unavailable to the algebraist.
Yet the axiom is necessary for specifying, e. g., an integer generating module whose only restriction is that
it returns a different integer each time it is called. The trace specification for such a module is simple.

hhhhhhhhhhhhhhhhhh
8. By the soundness theorem a trace is syntactically legal only if it is semantically legal. Since the string REMOVE is not
legal in M, it is not semantically legal.
9. In particular, the trace method is formalized in first order logic, which is a cylindric algebra [9].
10. On the other side of the coin, it should be noted that the trace method makes a sharper distinction between function calls
and the values they return than do most programming languages. As such, the trace method cannot represent calls that take
as a parameter the return value of another call as naturally as the algebraic method can.

- 10 -

Syntax:

GEN : --> int

Semantics:

(1) L (T)

(2) S ≠e --> V (R.S)≠V (R).

Readers should find it enlightening to try to specify this same module algebraically since they will
run into problems, not only in trying to capture the nondeterminism of the module, but also as discussed
above, in trying to represent sequences of function calls. Although the richness of the trace language
implies that consistency and totalness is harder to establish with the trace method, nobody has found a
sufficiently rich language for which consistency and totalness are decidable. Further, the methods
employed in this paper constitute an important step in developing a uniform method for establishing trace
specifications consistent and total.

3. A FORMAL FOUNDATION FOR TRACE SPECIFICATION

We must provide a formal foundation to support the intuitive presentation given above if we are to
have confidence in the methods presented there. This foundation consists of a formal syntax, a formal
semantics, and a formal derivation system for trace specifications. A soundness theorem and a complete-
ness theorem establish the correctness of the derivation system vis −a −vis the semantics.

3.1. A Formal Syntax

The first step in formalizing the notion of a trace specification is to precisely define the term
trace specif ication . Such a definition consists of giving a specification language L and stating how the
well-formed expressions of L can be combined to yield a specification. Although some of the
specifications given in the previous section contain constructs that are, strictly speaking, not well-formed
with respect to the language given here, they can easily be converted to well-formed specifications.11

3.1.1. Language for Specifications

L is defined by giving its vocabulary and the formation rules that combine vocabulary elements into
well-formed expressions. It is the smallest set that both contains its vocabulary and is closed under its for-
mation rules. Since the syntax of the semantic section of a specification depends on the procedure-call
descriptions given in the specification’s syntax section, the formation rules for the former are given in
terms of the latter. We assume that certain well-specified, countable, nonempty domains are given.

3.1.2. Vocabulary

The vocabulary of L contains that of first order logic. This is necessary to make boolean assertions
about traces. As such, it contains parentheses (,); the logical connectives ¬, & , ν, -->, <-->; the existen-
tial quantifier i

i
i
c; and the equality symbol =. L also contains ten vocabulary element types indigenous to

traces. The first three allow for the construction of traces, the next two allow for assertions about traces,
and the remaining element types allow for statements about parameter domains. These ten vocabulary
types follow.

Trace Variables:

A , B , C , ... are each a trace variable . They can be superscripted. They are used to make
general assertions about traces.

Empty Trace:

e is the empty trace . It denotes the null string of procedure calls.

hhhhhhhhhhhhhhhhhh
11. The point is that although the formal syntax is a necessary underpinning of the method, one can relax the syntax of the
language to make specifications easier to write as long as the specification can be written in the strict language if necessary.
See also the discussion of schemata that concludes this section of the paper.

- 11 -

Procedure Names:

Any finite character string is a procedure name . When composed with the appropriate param-
eters, it forms a procedure call. In the stack example, PUSH , POP , and TOP are procedure
names.

Trace Predicate:

The unary predicate L is the only trace predicate . As stated in the previous section, L is true
of legal traces.

Trace Functions:

The dot (.) and V are each a trace f unction . The dot concatenates traces to form a new trace,
and V , when applied to a trace that returns a value, denotes the value returned by that trace.

Domain Names:

The name of any given domain is a domain name . Such domains are said to be named . The
domains we are primarily interested in are parameter domains for procedure calls. An exam-
ple is the domain of integers.

Domain Constants:

φδ, where φ denotes any member of a named domain δ, is a domain constant . These denote
members of the named domains, e. g., "1int" denotes the integer 1.

Domain Functions:

φδ, where φ denotes any well-specified function on the members of a named domain δ, is a
domain f unction . If φ denotes an n-placed function, then φ is n −ary . If φ denotes a function
from δ to some domain δ* , then φ is said to be δ* −valued . For example, "+int" is a 2-ary,
integer-valued function.

Domain Relations:

φδ, where φ denotes any well-specified relation on the members of a named domain δ, is a
domain relation . If φ denotes a relation on n elements, it is n −ary . For example, "<int"
denotes less than over the integers.

Domain Variables:

a δ, b δ, c δ, ..., where δ is a domain name, are each a domain variable . They can be super-
scripted.

3.1.3. Formation Rules

The following formation rules show how to combine vocabulary elements to form syntax sentences
and assertions about traces. These in turn are combined into trace specifications.12

Domain Lists:

domain list →
domain name |
domain list domain name

A domain list containing n domain name occurrences is called an n place domain list .

Syntax Sentences:

syntax sentence →
procedure name: |
procedure name: domain list |
procedure name: --> domain name |

hhhhhhhhhhhhhhhhhh
12. The formation rules are given in a variant of Backus Normal Form.

- 12 -

procedure name: domain list --> domain name

When the syntax sentence is of one of the latter two forms, then the procedure name is said to be a
δ−valued f unction name where δ is the rightmost domain name in the sentence. A procedure name fol-
lowed by a domain list of the form δ1, . . . , δn , is said to be of signature <δ1, . . . , δn >. A procedure name
not followed by a domain list is said to be of signature ∅.13 Any domain name that occurs in a syntax sen-
tence is a parameter domain . Any parameter domain that occurs to the right of an arrow is a
return value domain .

Domain Elements:

domain element →
domain constant |
domain variable

Argument Lists:

argument list →
domain element |
argument list, domain element

An argument list of the form αδ1, . . . , αδn is said to be of signature <δ1, . . . , δn >.

Procedure Calls:

procedure call →
procedure name |

where the procedure name is of signature ∅.

procedure name(nonempty argument list)

where the signature of the argument list is a signature of the procedure name.

Trace Expressions:

trace expression →
empty trace |
trace variable |
procedure call |
trace expression.trace expression

A trace expression that contains neither a trace variable nor a procedure call that has a domain vari-
able for a parameter is called a trace constant .

Terms:

term →
domain element |
trace expression |
V (trace expression) |
n-ary domain function(argument list)

where the function is of the form φδ, and the argument list is of signature
<δ1, . . . , δn > with δi =δ.

Terms have the following types . Domain elements of the form αδ are of type δ. Trace expressions
are of type trace expression . Terms of the form φ(argument list) where φ is a δ-valued domain function
are of type δ. Terms of the form V (trace expression) are untyped. Two terms are of compatible type if
both have the same type, both are untyped, or one is of type δ where δ is a domain name and the other is
untyped. A term is atomic if it is either a domain element or a trace expression. A term is constant if it is
hhhhhhhhhhhhhhhhhh
13. Note that a procedure name can have as many signatures as times it appears in a syntax sentence.

- 13 -

either a domain constant or a trace constant.

Variables:

variable →
domain variable |
trace variable

Assertions:

assertion →
L (trace expression) |
n-ary domain relation(argument list) |

where the relation name is of the form R δ and the argument list is of signature
<δ1, . . . , δn > with δi =δ.

term=term |
where the terms are of compatible type

¬assertion |
(assertion & assertion) |
(assertion ν assertion) |
(assertion --> assertion) |
(assertion <--> assertion) |
(ii
i
cvariable)assertion |

(variable)assertion

For the sake of readability, assertions of the form ¬φ=ψ will be written as φ≠ψ, and parentheses will
be dropped from the outside of Boolean expressions when no ambiguity results. Each occurrence of a vari-
able φ in an assertion (φ)Θ or (ii

i
cφ)Θ is said to be bound . Occurrences that are not bound are f ree . An

assertion is closed if it contains no free occurrences of any variable.

Definition:
A trace specif ication is an ordered pair (syntax specification, semantic specification), where a

syntax specif ication is a recursive set of syntax sentences and a semantic specif ication is a recur-
sive set of assertions.

A trace specification is proper if every assertion in its semantic specification is closed. Since all
assertions in a proper trace specification are closed, we can abbreviate assertions of the form (v)Θ by Θ.
For the rest of this paper, we will mean by trace specif ication a proper trace specification, unless expli-
citly stated otherwise.

3.1.4. Language Extensions

For ease of expression, the trace relation symbol ≡ is introduced into the language as an abbrevia-
tional device. As mentioned above, the relation holds between two traces if and only if they agree on
current and future legality and on all future return values. Its formal definition follows.14

Definition:
For any trace expressions φ and ψ,

φ≡ψ =def

(T)((L (φ.T) <--> L (ψ.T)) &
(T ≠e -->

(((ii
i
cv)V (φ.T)=v <-->(ii

i
cv)V (ψ.T)=v) &

((ii
i
cv)V (φ.T)=v --> V (φ.T)=V (ψ.T)))))

hhhhhhhhhhhhhhhhhh
14. See [12] for a formalization where ≡ is treated as a language primitive instead of as an abbreviation.

- 14 -

Although trace specifications can contain infinitely many syntax sentences and assertions, we have
yet to introduce a notation for writing such long specifications. Such specifications are written using syntax
and assertion schemata. A syntax schema is a syntax sentence in which at least one occurrence of one or
more domain names, say δ, has been replaced either by a string of the form [δ] or by a string of the form
δ1

. . . δn . In the first case the schema is expanded to two syntax sentences, one that is identical to the
schema, but with the brackets deleted, and one that is identical to the schema, but with the brackets and the
enclosed parameter deleted. Hence, POP : [int] expands to POP : and POP : int. In the second case the
schema is expanded to form the infinite number of sentences (or schemata) that can be formed by replacing
the leftmost occurrence of the dotted string by δ1, δ1 δ2, etc. in turn. Hence, the sentence
PUSH : int . . . int expands to PUSH : int, PUSH : int int, etc. When there is more than one such string in a
sentence, the resulting schemata are expanded in turn, leftmost first.

An assertion schema is formed by replacing one or more parameters of the same type in a procedure
call by a string of the form vm , . . . , vn where m is a positive integer and v is a variable of the same type as
the replaced parameter(s). Such a schema is expanded by replacing the leftmost occurrence of such a
string by vm ; vm ,vm +1; etc. in turn. If there is more than one such string, the resulting schemata are
expanded in turn, leftmost first, except that when there are identical variables, a string cannot go beyond
the subscript generated by a string to the left of it. If this makes it impossible to substitute for a string, then
the entire call (with its preceding dot or trailing dot, but not both) is deleted from the containing trace. If
this renders the containing assertion ill-formed, then the assertion is not substituted for the schema. Hence,
PUSH (x 1, . . . , xn)≡PUSH (x 1).PUSH (x 2, . . . , xn) expands to PUSH (x 1)≡PUSH (x 1),
PUSH (x 1,x 2)≡PUSH (x 1).PUSH (x 2), etc.

It should be noted that the schemata described here are only one possible way to extend the formal
language. Any extension to or relaxation of the formal language is allowable as long as a method is given
for reducing the new constructs into primitive notation.

3.2. A Formal Semantics for Trace Specification

So far we have relied on an intuitive understanding of the meanings of the symbols contained in our
trace specification language. However, a formal semantics is necessary if we are to reason rigorously
about the structures that can serve as models for a trace specification. Not every structure can serve as such
a model. There are implicit restrictions on the denotations that are acceptable for the symbols of our
language. For example, the denotation of the trace concatenation symbol must be associative. In this sec-
tion of the paper, we define a model and define what it means for an assertion to be true in a model. This
will support rigorous definitions of the semantic concept of consistency for a trace specification, i. e., hav-
ing a model, and the semantic concept of totalness for a trace specification, i. e., not having models that
differ with respect to the values they yield for a legal trace constant ending in a function call. Although I
will further discuss these semantic conceptions of consistency and totalness and the relation between
models and implementations later, it should be clear that there is a model that makes V (T)=a true if there
is an implementation that returns a when accessed by the series of procedure calls T . Hence, semantically
inconsistent specifications have no implementation, and specifications that are total in this semantic sense
do not have implementations that differ with respect to observable behavior.

3.2.1. Definition of Trace Model

A trace model is an ordered pair (D ,I) where D is a disjoint tuple of domains and I is a function
from syntactic constructs in L to their denotations in D .15 More specifically,
D = (DT ,D 1,...,Dn ,Dn +1,...,Dm) where DT can intuitively be regarded as consisting of traces, D 1...Dn can
intuitively be regarded as return value domains, and Dn +1...Dm can intuitively be regarded as parameter
domains that are not return value domains. DT contains as a subset De , intuitively which consists of the
null trace, and traces that are formed from elements of DT by composing them with a procedure call.16

hhhhhhhhhhhhhhhhhh
15. The restriction that the parameter domains are disjoint is for simplicity. It is possible to axiomatize a version of
specification where parameter domains can be subsets of one another.
16. Ideally, the set of trace denotations is the smallest set closed under composition that contains the null trace and each
procedure call. However, this restriction cannot be forced axiomatically in first order logic; infinite compositions of pro-
cedure calls must be allowed. See the section of this paper on nonstandard models for further discussion of this point.

- 15 -

Further, De must be disjoint from the set of procedure call compositions. If for example, PUSH (a).POP ’s
denotation were in De , then POP would be both a functional procedure (since DEPTH.e returns a value)
and a nonfunctional procedure (since e does not return a value). More formally, let P be the set of denota-
tions of procedure calls, i. e., P = Rng (I /{v : v is a procedure call}). Our requirement on DT is that if
x ∈DT , then x ∈ De if and only if x ∈/ {y : y =I [.](u ,w) for some u ∈DT and w ∈P }. DT also contains as
subsets DL , intuitively consisting of the legal traces, and DV , intuitively consisting of those traces that end
in a function call. (Hence, De ∩DV = ∅.) DV is partitioned into subsets DVi where each DVi can intuitively
be regarded as consisting of those traces that end in a function call of type δ where I [δ]=Di . Since the null
trace is always legal, DL contains as a subset De .

I must assign equality and the set of legal traces to the equality symbol and L , respectively, and it
must assign to V a function from legal traces that return a value of type δ to I [δ]. I [.] must be associative,
treat the empty trace as an identity element, and maintain the distinction between traces that return a value
of type δ and those that do not. It must also respect the fact that if a module aborts, it cannot recover.
Finally, I must assign appropriate denotations to domain elements, domain functions and relations, and to
trace expressions. A formal statement of these requirements on I follows.

(1) I [=] = {(x ,x):x ∈∪D }.

(2) I [L] = DL .

(3) I [V] = f : DVi ∩DL →Di ,1≤i ≤n .

(4) I [.] = f : DT ×DT →DT such that for all x ,y ,z ∈DT

(a) f (f (x ,y),z)= f (x , f (y ,z)),

(b) f (x ,y)=x if y ∈De ,

(c) f (x ,y)=y if x ∈De ,

(d) f (x ,y)∈DT ∼DVi if y ∈/DVi ∪De ,

(e) f (x ,y)∈DVi if y ∈DVi ,

(f) f (x ,y)∈DT ∼DL if x ∈/DL .

(5) I [domain name] ∈ D ∼DT .

(6) I [αδ] ∈ I [δ] where αδ is a domain element.

(7) I [f δ] = g : I [δ]n → I [δ*] where f δ is a n −ary , δ* −valued domain function.

(8) I [R δ]⊆I [δ]n where R δ is a n −ary domain relation.

(9) I [trace expression] is defined by recursion:

(a) I [e] ∈ De .

(b) I [φ] ∈ DT for any trace variable φ.

(c) I [procedure call] = I [φ](I [α1],...,I [αn]) where φ is the procedure name of the call, and
αi is the ith parameter of the call if there is one. I [φ] is a function from the set of signa-
tures of φ to D* where D* =DVi if the procedure is a functional procedure of type δ and
I [δ]=Di , else D* =DT ∼DV .

(d) I [T.R] = I [.](I [T],I [R]) where T and R are any trace expressions.

3.2.2. Definition of Truth in a Model

Given our definition of a model, we must now define what it is for such a model to be a model of a
particular trace specification. We do this by defining what it is for an assertion to be true in a model
M =(D ,I). Let T and T* be any trace expressions, R any relation name, and t 1, . . . , tn any domain ele-
ments, and t and t* be any terms.

(1) L (T) is true in M if and only if I [T]∈I [L].

(2) R (t 1, . . . , tn) is true in M if and only if (I [t 1],...,I [tn])∈I [R].

(3) t =t* is true in M if and only if I [t] and I [t*] are both defined and I* [t]=I [t*] where
I* [φ] = I [φ] if φ is a domain element or trace expression, I* [φ] = I [V](I [T]) if φ is of the

- 16 -

form

V (T), and I* [φ] = I [f](I [t 1],...,I [tn]) if φ is of the form f (t 1,...,t 1).

For any Boolean combination of assertions φ and ψ we use Tarski’s recursive definition of truth [17].
For quantification over variable v , we use a somewhat simpler definition of truth than Tarski’s.

(1) ¬φ is true in M if and only if φ is not true in M .

(2) φ & ψ is true in M if and only if φ is true in M and ψ is true in M .

(3) φ ν ψ is true in M if and only if φ is true in M or ψ is true in M .

(4) φ --> ψ is true in M if and only if ψ is true in M or φ is not true in M .

(5) φ <--> ψ is true in M if and only if both φ and ψ are true in M , or neither φ nor ψ are true in
M .

(6) (ii
i
cv)φ is true in M if and only if φ is true in some interpretation M* =(D* ,I*) such that D =D*

and I =I* except perhaps in what it assigns to v .

(7) (v)φ is true in M if and only if φ is true in every interpretation M* =(D* ,I*) such that D =D*
and I =I* except perhaps in what it assigns to v .

Definition:
M is a model for a trace specification S if and only if every assertion in the semantic specification

of S is true in M .

Definition:
An assertion A is a semantic consequence of a specification S , written S |= A , if and only if A is
true in every model of S .

Definition:
A specification S is semantically consistent if and only if it has a model.

Definition
A specification S is semantically total if and only if for every trace constant Φ such that S |= L (Φ),
there is a constant a such that S |= V (Φ)=a .

We have already seen that models can often be converted into programs. The converse is true as
well. Given any program P , we say that P suggests a model M with the following domains: DT consists
of all possible compositions of procedure calls of P ; DL consists of those elements of DT that do not result
in error; DV consists of those elements of DT that end in a function call; and De is the null procedure call.
D is (DT ,D 1,...,Dn) where Di is the ith parameter domain of the module under an appropriate ordering. If
P suggests a model M =(D ,I) for a specification S where I is a function that takes a string in S to its
namesake in D , then we say S specif ies P .

Every implementable specification has a model that can be constructed in this fashion. The converse
is false unless the specification has a model that contains only computable functions.17 It should be noted
that the language can be restricted to eliminate such functions. I have chosen not to do so here for the sake
of a more elegant theory and to emphasize the distinction, often blurred in the literature, between a model
and an implementation. All specifications contained in this paper are implementable.

3.3. A Formal Deductive System for Trace Specification

A formal deductive system permits us to derive assertions from trace specifications in a way that can
be verified mechanically. Ideally, it would be possible to derive an assertion from a specification if and
only if that assertion was a semantic consequence of that specification. Such a system permits one to rea-
son about trace specifications without appealing to semantic properties and serves as the backbone of the
quick implementation system discussed above. Such a deductive system yields a definition of derivation
and allows us to formalize the syntactic notion of consistency, i. e., not being able to derive V (T)=d ,
V (T)=d* , and d ≠d* from a specification for any trace constant T and domain constants d and d* , and the
hhhhhhhhhhhhhhhhhh
17. As a counterexample, the interested reader can verify that G"odel’s provability predicate [4] is specifiable though not re-
cursive.

- 17 -

syntactic notion of totalness, i. e., that if L (T.P) is derivable from a specification for any trace constant T
and variable-free function call P , then V (T.P)=c is derivable for some domain constant c . The primary
concern of the rest of this paper is to present a formal deductive system for trace specifications and prove
that the system is correct.

The following deductive system has been designed to make derivations relatively easy to construct.
Systems that lend themselves more easily to computerized verification of derivations have been constructed
from this one by replacing the tautology rule by modus ponens and supplementing the axiom set with a
complete set of axioms for sentential calculus as can be found, e. g., in [11]. A deduction theorem for the
system is proven, and possible extensions, and modifications to the system are discussed at the end of this
section.

3.3.1. Definition of Derivation

Let v be any variable; δ any domain name; t ,t 1,t 2, . . . any terms; C any procedure call; and φ, ψ
any assertions. φv /t is the result of replacing every free occurrence of v in φ by t except where such a
substitution would result in a bound occurrence for t .18 A well-formed instance of any of the following
schemata is an axiom .

1. (ii
i
cv)v =t

where v and t are the same type, t atomic.

2. (v)(φ --> ψ) --> (φ --> (v)ψ)
where v is not free in φ.

3. ((v)φ& (ii
i
cv)v =t) --> φv /t

where φv /t is well-formed.

4. v =v

5. t =t 1 --> (φ <--> ψ)
where ψ is like φ except for possibly having some occurrences of t 1 where φ has t .

6. t =t 1 --> (ii
i
cvd 1)t =vd 1 [ν...ν (ii

i
cvdn)t =vdn]

for each parameter domain di such that t 1 and vdi are of compatible type.

7. T =T.e

8. T =e.T

9. L (e)

10. L (T.S) --> L (T)

11. (ii
i
cS)(ii

i
cv 11)...(i

i
i
cv 1n)T =S.C 1 --> ¬(ii

i
cR)(ii

i
cv 21)...(ii

i
cv 2m)T =R.C 2

where C 1 is a δ-valued function call with v 1i as the ith parameter of the call, and C 2 is a
procedure call, with v 2i as its ith parameter, that is not a δ-valued function call.

12. ((ii
i
cS)((ii

i
cv 11)...(i

i
i
cv 1n)T =S.C 1 ν...ν (ii

i
cavm 1)...(ii

i
cvmk)T =S.Cm) &

L (T)) <--> (ii
i
cv)V (T)=v

where Ci is a call on the ith δ-valued function name with aij as the jth parameter
of the ith call and v is of type δ.

13. T ≠e <-->
(ii
i
cR)((ii

i
cv 11) . . . (ii

i
cv 1n)T =R.C 1 ν . . . ν (ii

i
cavk 1)...(ii

i
cavkm)T =R.Ck)

where Ci is a call on the ith procedure of S with aij as the jth parameter of the
call.

Each of the following is a rule of inf erence .

TC: (Tautological Consequence) If φ is a tautological consequence (as, e. g., determined by a truth
table) of a (possibly empty) set of earlier lines in a derivation, then φ may be entered as a line
in that derivation.

hhhhhhhhhhhhhhhhhh
18. The sense of occurrence used here is the standard one as used, e. g., in [11], extended to regard trace expressions that
occur within other trace expressions as occurring in any assertion that the latter occurs in.

- 18 -

UG : (Universal Generalization) If φ appears as an earlier line in a derivation, then one may enter
(v)φ as a line in that derivation.

EI : (Existential Interchange) If φ appears as an earlier line in a derivation and ψ is like φ except
for having one or more occurrences of (ii

i
cv) where φ has ¬(v)¬ or vice versa, then one may

enter ψ as a line in that derivation.

Definition:
A derivation from a trace specification S is a finite sequence of lines, each of which is either (1) an
assertion contained in the semantic specification of S , (2) an axiom, or (3) an assertion justified by a
rule of inference with the restriction that UG is not applied to any variable that occurs free in the
semantic specification of S. (It should be noted that the restriction on UG is otiose when S is
proper.).

Definition:
An assertion φ is derivable from S , written S |− φ, if and only if there is a derivation from S that has
φ as a last line.

Definition:
A specification S is syntactically consistent if and only if there is no assertion of the form A & ¬A
such that S |− A & ¬A .19

Definition:
A specification S is syntactically total if and only if for every trace constant Φ ending in a function

call, S |− L (Φ) only if there is a constant a such that S |− V (Φ)=a .

3.3.2. Deduction Theorem

The following theorem will prove useful in later sections of this paper.

Theorem:
If S is a (possibly nonproper) trace specification whose semantic specification contains the assertion
φ, then S |− ψ only if S* |− φ --> ψ where S* =S ∼{φ}, i. e. S with φ removed from its semantic
specification.

Proof: Proof is by induction on the length of derivations. As such, we will assume the theorem for
all derivations of length less than n and show that it holds for all derivations of length n whose final line is
ψ. There are four possible cases:

(1) If ψ is an axiom, then trivially S* |− ψ, from which we can infer that S* |− φ --> ψ by TC .

(2) If ψ was inferred by TC , then it is a tautological consequence of earlier lines L1,...,Lm . By
hypothesis, S* |− φ --> L 1,...,S* |− φ --> Lm , from which we may infer that S* |− φ --> ψ by
TC .

(3) If ψ was inferred by UG , then it is of the form (v)L where L appears as an earlier line. If φ is
not in S , then S =S* and by TC , S* |− φ --> ψ. If φ is in S , then by hypothesis, S* |− φ --> L .
Since we could apply UG to L , v does not occur free in S (or S*). Therefore, we can apply
UG to the conditional, obtaining S* |− (v)(φ --> L). Further, since φ is in S , v does not appear
free in φ, so we can apply axiom (2) and TC to obtain S* |− φ --> (v)L .

(4) If ψ was inferred by EI from an earlier line L , then S* |− φ --> L , and we can apply EI to
obtain S* |− φ --> ψ.

3.3.3. Possible Extensions and Modifications

The above system is minimal in that although I think it correctly represents the trace method as
described in [1], some have suggested that it be extended to include further axioms that reflect
modifications to the original description of the method. Possible extensions include the addition of stronger
axioms for trace equality and axioms that allow for a more radical form of nondeterminism than allowed
hhhhhhhhhhhhhhhhhh
19. Since our deductive system contains TC, A & ¬A is derivable if and only if there is a trace constant T ending in a func-
tion call such that V(T)=x, V(T)=y, and x≠y are derivable for some x and y.

- 19 -

for here -- i.e., one in which the same implementation may return different values for the same string of
function calls at different times.

I chose not to extend this system since it is not clear that any improvement such extensions would
make in the specification method is not outweighed by the complexity they would add to the system. For
example, the former extension adds little, if anything, to the trace method, yet it requires more restrictions
to be placed on I [.] to render, e. g., I [.](I [w],I [x])≠I [.](I [y],I [z]) if x and z are distinct procedure calls
and hence, also necessitates the inclusion of a new subset DP of DT consisting of the denotations of pro-
cedure calls. By complicating the definition of model, it would make it harder to verify that a specification
is consistent. The latter extension would make the method more general, yet it would require either the
inclusion of temporal elements in the language, forcing us to give up extensionality and causing complete-
ness problems when we include schemata [13], or the introduction of the membership relation into the
language, also causing completeness problems.20

3.4. Soundness Theorem

We have both a semantics and a deductive system for the trace specification method, and
corresponding conceptions of both consistency and totalness. However, we have yet to bridge the gap
between them. The following theorem is fundamental in establishing this bridge.

Theorem:
An assertion A is derivable from a set of assertions S only if it is a semantic consequence of S , i. e.,

S |− A => S |= A .

Proof: Given any model M of S , we will prove by induction on the length of A ’s derivation that A is
true in M . Assume that S |−m A => S |= A , for all m <n where S |−m A means that A is derivable from S
by a derivation of m steps. We must show that S |−n A => S |= A . If A is an assertion contained in S , the
proof is trivial since, by assumption, M models S . If A is licensed by an axiom or rule of inference, we
have the following possible cases:

(1) If A was inferred by axiom (2) or a rule of inference, then its truth follows by standard argu-
ment from the induction hypothesis since we have employed the standard definition of truth for
all connectives.

(2) If A was inferred by axiom (1), then it is of the form (ii
i
cv)v =t where v and t are of the same

type and t is atomic. This assertion is true in all models given the interpretation of such terms
and of equality.

(3) If A was inferred by axiom (3), then it is of the form ((v)φ & (ii
i
cv)v =t) --> φv /t where φv /t is

well-formed. Its truth follows from the fact that (ii
i
cv)v =t is true if and only if t denotes some

object in the domain that is of the same type as v . Given that t is such a term, the axiom
reduces to a special case of (v)φ --> φv /t , which is true by standard argument.

(4) If A was inferred by axiom (4), then it is of the form v =v . The truth of this assertion follows
from the definition of equality and the interpretation of variables in the definition of a trace
model.

(5) If A was inferred by axiom (5), then it is of the form t =t* --> (φ <--> ψ) where ψ is like φ
except for some possible occurrences of t* . If t =t* is not true in M , then A is true in M . If
t =t* is true in M , then φ <--> ψ, and therefore A , is true in M .

(6) If A was inferred by axiom (6), it is of the form t =t* --> (ii
i
cvd 1)t =vd 1 ν...ν (ii

i
cvdn)t =vdn where

each vdi is of compatible type with t* . Its truth follows from the fact that t =t* can be true
only if t denotes an object in some domain of the appropriate type.

(7) If A was inferred by axiom (7) or (8), then it is of the form T =T.e or T =e.T . By definition of
I [.], I [T.e] = I [T] = I [e.T] for any T in any sequence.

(8) If A was inferred by axiom (9), then it is of the form L (e). But for any model this is true since
I [e]∈I [L].

hhhhhhhhhhhhhhhhhh
20. See [12] for further discussion on how to extend the system presented here.

- 20 -

(9) If A was inferred by axiom (10), then it is of the form L (T.S) --> L (T). This is true on all
models by clause (f) of the definition of I [.].

(10) If A was inferred by axiom (11), then it is of the form (ii
i
cS)(ii

i
cv 11)...(i

i
i
cv 1n)T =S.C 1 -->

¬(ii
i
cR)(ii

i
cv 21)...(ii

i
cv 2m)T =R.C 2 where C 1 is a δ-valued function call with v 1i as the ith parameter

of the call, and C 2 is a procedure call, with v 2i as its ith parameter, that is not a δ-valued func-
tion call. Assume A ’s antecedent is true. I [C 1]∈DVi where I [δ]=Di by the definition of
I [procedure call]. Therefore, I [T]∈DVi by clause (e) of I [.]. If A ’s consequent were false,
we would have two possibilities. If C is a function call of type δ* where δ* ≠δ, then
I [T]∈DVk where k ≠i . But this is impossible since the DVi are disjoint. If C is not a function
call, then I [C]∈/DV by definition of I [procedure call]. Further, I [R.C]∈/DV by clause (d) of
I [.] since procedure calls are not in De . Hence, we would have I [T] in both DV and DT ∼DV ,
which is impossible.

(11) If A was inferred by axiom (12), then it is of the form ((ii
i
cS)((ii

i
cv 11)...(i

i
i
cv 1n)T =S.C 1 ν...ν

(ii
i
cavm 1)...(ii

i
cvmk)T =S.Cm) &

L (T)) <--> (ii
i
cv)V (T)=v , where Ci is a call on the ith δ-valued function name with aij as the

jth parameter of the ith call and v is of type δ. Its truth can be seen by noting that the right
hand side is true if and only if I [T]∈DVi ∩DL . By definition I [V] is defined on all and only
legal traces in DV and takes elements of DVi to Di .

(12) If A was inferred by axiom (13), then it is of the form T ≠e <-->
(ii
i
cS)((ii

i
ca 11)...(i

i
i
ca 1n)T =S.C 1 ν...ν (ii

i
cak 1)...(ii

i
cakm)T =S.Ck), where Ci is a call on the ith pro-

cedure name of S with aij as the jth parameter of the call. Its truth can be seen by noting that
an element of DT is not in De , if and only if it is equal to I [.](u ,w) for some u ∈DT and
w ∈Rng (I /{v : v is a procedure call}) where u may be in De .

Corollary:
A trace specification is syntactically consistent if it is semantically consistent.

Proof: If a trace specification is not syntactically consistent, then there is an assertion φ, such that
φ & ¬φ is derivable from the specification. By the Soundness Theorem, this latter assertion must be a
semantic consequence of any model of the specification. Since the assertion is false in all models, the
specification has no models.

3.5. Completeness Theorem

The corollary of the Soundness Theorem offers us a method for proving specifications consistent in
either sense of the term, viz . finding a model. In this section we prove the deductive system complete
vis −a −vis the semantics, i. e., that every syntactically consistent specification has a model. This shows the
universality of model construction for proving specifications, e. g., consistent, and completes the bridge,
began in the previous section, between the syntactic conceptions of consistency and totalness on one hand
and their semantic counterparts on the other. The reader should be warned that for the rest of this section I
use the term trace specif ication to refer to both proper and non-proper specifications, unless explicitly
noted otherwise. Further, I often refer to the semantic specification of some trace specification S , simply as
S for the sake of brevity, and I use S ∪ {A } to refer to the specification that results from adding assertion
A to the semantic specification of S .

Theorem:
Every syntactically consistent trace specification has a model.

Proof: We follow a method analogous to that contained in [8], which consists of demonstrating that
every specification of a certain type has a model and then demonstrating that every consistent specification
can be extended to a specification of that type. The algebraically inclined reader will recognize the type of
specification we focus on as being similar to an ultrafilter. This renders the second demonstration analo-
gous to the proof that every set of formulas in a Boolean algebra that satisfies the finite intersection pro-
perty can be extended to an ultrafilter, and suggests the following definitions:

Definition:
A trace specification is maximally consistent if and only if it is syntactically consistent and is such
that the addition of any further assertion to its semantic specification would render it syntactically

- 21 -

inconsistent.

Definition:
A trace specification is ω−complete if and only if for each assertion of the form (ii

i
cv)A in its seman-

tic specification for some variable v , there is an assertion of the form Av /t in its semantic
specification for some atomic term t of the same type of v .

The following two facts about maximally consistent trace specifications are needed.

Fact 1: For any maximally consistent trace specification S and any assertion A , either A is in the semantic
specification of S or ¬A is in the semantic specification of S .

Proof: If neither A nor ¬A is in S , then S ∪{A } |− P & ¬P and S ∪{¬A } |− P & ¬P for some
assertion P . But then S |− A --> P & ¬P and S |− ¬A --> P & ¬P by the Deduction Theorem. But by
TC , this implies that S is inconsistent.

Fact 2: S is closed under derivation, i. e., if S |− A then A ∈S .

Proof: If A ∈/S then ¬A ∈S as proven above, and S would be inconsistent.

The theorem now follows from two lemmas.

Lemma:
Every maximally consistent, ω-complete specification S has a model.

Proof: Order all the domain names d 1, . . . , dm such that d 1−dn name all the return value domains.
Consider the set of terms {t : (ii

i
cv)v =t ∈ S }. Divide the terms of this set into equivalence classes

Et = {s : s =t ∈ S }. (These are equivalence classes, given that S is closed under derivation, since the
reflexivity, transitivity, and symmetry of equality for such terms follow from axioms (4)-(5).) Since there
are at most a countable number of terms, we can associate each equivalence class Et with an unique integer
Nt . In each case this integer is the denotation of every term in the equivalence class associated with it.
Each atomic term receives a denotation since t =t is in S for each such t by axiom (1)

This assignment suggest the following domains and denotations.

DT = {x : x = N φ for some trace expression φ}.

Di = {x : x = Nt for domain element t of type di }.

De = {Ne }.

DVi = {x : x = N φ.C for di -valued function call C }.

DL = {x : x = N φ and L (φ) is in S }.

I [δ] = Di , where δ is the ith domain name in the ordering.

I [α] = N α where α is a domain variable or constant.

I [f] = {(Nt 1,...,Ntn ,Nt): f (t 1,...,tn)=t ∈ S }.

I [R] = {(Nt 1,...,Ntn): R (t 1,...,tn) ∈ S }.

I [e] = Ne .

I [φ] = {(NP 1,...,NPn ,N φ(P 1,...,Pn)): where φ(P 1,...,Pn) is a well-formed pro-
cedure call}.

I [L] = DL .

I [=] = {(x ,x): x = Nt for some term t }.

I [.] = {(NT ,NR ,NT.R): T and R are trace expressions}.

I [V] = {(NT ,Nt): NT ∈ DV ∩DL and V (T)=t ∈ S }.

We must show that ordered pair M =(D ,I) we have constructed meets the conditions necessary to be
a model. The members of D are disjoint since there are no well-formed assertions of the form t 1=t 2 where
t 1 and t 2 are expressions of noncompatible types. Hence, we only must show that DT is proper. Assume x
is in DT , we must show that x ∈ De if and only if x ∈/ {y : y = I [.](u ,w) for some u ∈ DT and
w ∈ Rng (I /{v : v is a procedure call})}. By construction, x ∈ DT if and only if there is a trace expression
φ such that x = N φ, and x ∈ De if and only if there is a ψ such that φ=ψ and ψ=e are in S . Since S is
closed under derivation, axiom (5) implies that x ∈ De if and only if φ=e is in S , and by Fact 1, x ∈/ De , if

- 22 -

and only if φ≠e is in S . Assume that x ∈ De , and hence, that φ=e is in S . If x were also a composition of
a trace with a procedure call, then there is a ψ such that φ=ψ and ψ=T.C are in S where C is a procedure
call. But this would render S inconsistent by axiom (13), contrary to hypothesis. If on the other hand
x ∈/ De , then φ≠e is in S . Since S is closed under derivation, axiom (13) implies that
(ii
i
cR)((ii

i
ca 11)...(ii

i
ca 1n)φ=R.C 1 .. (ii

i
cak 1)...(ii

i
cakn)φ=R.Ck), where each Ci is a procedure call, is in S . Since S is

ω-complete, an instance of this assertion is also in S . Further, if none of the disjuncts of this assertion were
in S , then each of their negations would be in S by Fact 1, and S , contrary to hypothesis, would be incon-
sistent. Hence, if x ∈/ De , there is an assertion of the form φ=R.C in S where C is a procedure call, and by
construction, x = I [.](I [R],I [C]). Analogous arguments show that De ⊂ DL since L (e) is in S by axiom
(9), and that no trace is in two DVi by axiom (11).

Clauses (1), (2), and (5)-(9) of the definition of trace model are satisfied by construction given that S
is a well-formed trace specification. The rest of the definition is satisfied since S is maximally consistent,
ω-complete and closed under derivation.

With respect to I [V], note that if NT ∈ DVi ∩ DL , then T is in an equivalence class that contains
some trace expression R.C where C is a di -valued function call, and some trace expression Q such that
L (Q) is in S . But then T =R.C and T =Q are in S , which given axiom (5) and that S is closed under
derivation, implies that L (R.C) is in S . Hence, (ii

i
cvdi)V (T)=vdi is in S by axiom (12), which in turn implies

that V (T)=t is in S for some domain term of type di since S is ω-complete. Further, there is no term of
type dj , j ≠i such that (ii

i
cvdj)V (T)=vdj is in S since this would render S inconsistent via axioms (11) and

(12). Hence, by construction I [V] takes I [T] to di .

Clause (a) of I [.] is trivial and clauses (b) and (c) follow from axioms (7) and (8). Clause (d) is
satisfied since as shown above NT ∈/ De if and only if T =R.C is in S for some function call C . NT ∈ DVi if
and only if T =R.C is in S for some di -valued function call C . Assume that NT ∈/ DVi ∪ De . Then T =R.C
is in S for some C that is not a function call of type di . Now, for any Q , NQ.T ∈ DVi if and only if
Q.T =W.C* for some di -valued function call C* . Hence, NQ.T ∈ DVi implies that Q.R.C =W.C* is in S
where C* is a di -valued function call and C is not. But this would render S inconsistent by axiom (11)
and is, therefore, impossible. Clause (e) holds since if T =R.C is in S for some di -valued function call C ,
then for any Q , Q.T =Q.R.C is in S . Finally, Clause (f) follows from axiom (10).

Given that M is a model, we show that it makes true every assertion in S . To this end, define the
order of an assertion A , O [A], as follows:

If A is of the form R (t 1,...,tn), L (T), or t =t* , then O [A] = 1.

If A is of the form ¬B , B ν C , B & C , B --> C , or B <--> C , then
O [A] = max (O [B],O [C])+1.

If A is of the form (v)B or (ii
i
cv)B then O [A] = O [B]+1.

We show that every assertion A in S is true by induction on the order of A . If each formula of order
less than n is true if and only if it is in S , we show that each formula A of order n is true if and only if it is
in S . This establishes a fortiori that every assertion is S is true. There are four possible cases:

(1) If O [A] = 1 and A is not of the form t =t* , then A is true in M if and only if A is in S by con-
struction. If A is of the form t =t* , we must show that t (and hence, by symmetry, t*) has a
denotation. There are two cases. If t is atomic, then it has a denotation by construction. If t is
of the form V (T) or f (t 1, . . . , tn), then (ii

i
cvd 1)t =vd 1 ν...ν (ii

i
cvdn)t =vdn is in S by axiom (6). But

as shown in proving that M is a model, a disjunction can be in S only if one of its disjuncts is
in S . Hence, (ii

i
cv)t =v is in S for some vdi . Since S is ω-complete, t =s is in S for some

atomic term s . Hence, t denotes what s denotes.

(2) If O [A] is greater than 1 and A is a truth functional compound of B and C , then by induction
hypothesis, B and C are in S if and only if they are true. Consider the case where A is of the
form B ν C . If A is in S , and neither B nor C are in S , then ¬B and ¬C are in S by Fact 1,
and S would be inconsistent. Therefore, if A is in S either B is in S or C is in S . Hence, if A
is in S , either B or C is true by hypothesis, and therefore, A is true. If A is not in S , then ¬A
is in S . Hence, neither B nor C can be in S since S is consistent. Hence, by hypothesis nei-
ther B nor C is true, from which it follows that A is not true. The argument for other truth
functional compounds is analogous.

- 23 -

(3) If O [A] is greater than 1 and A is of the form (ii
i
cv)B , then A is in S only if Bv /t is in S for

some atomic term t since S is ω-complete. By the induction hypothesis Bv /t is true which
implies that B is true in that model that is identical to the M except for assigning Nt to v .
Hence, A is true by definition. If A is not in S then ¬A , and hence (v)¬B , is in S . If there
were an atomic t such that Bv /t were in S , then we would also have ¬Bv /t in S by axioms (1)
and (3). Hence, there is no atomic t such that Bv /t is in S since S is consistent. By induction
hypothesis, there is no model of the appropriate type that makes B true since by construction,
every element in D is denoted by some atomic t . Therefore, A is not satisfied.

(4) The only other possibility is if A is of the form (v)B . If A is in S , then Bv /t must be in S for
every atomic term since we can derive Bv /t from A for every such term by axioms (1) and (3).
By the induction hypothesis, B is true in all appropriate models since every element in D is
denoted by some atomic t . Therefore, A is true. If A is not in S , then ¬(v)B must be in S by
Fact 1. Hence, (ii

i
cv)¬B is in S since S is closed under derivation. But S is ω-complete; there-

fore, ¬Bv /t is in S for some atomic t . Hence, there is a model in which B is not true, and
therefore, A is not true.

Given that every maximally consistent, ω-complete specification has a model, all that is left to prove
is that any syntactically consistent trace specification is contained in some maximally consistent, ω-
complete specification. This establishes a fortiori that every syntactically consistent specification has a
model since any model of the extension is a model of the original specification.

Lemma:
Every syntactically consistent specification S can be extended to a maximally consistent, ω-

complete specification.

Proof: Enumerate all assertions in the trace specification language so that Ai is the ith assertion in
the enumeration and build the specification Σ as follows:

Σ0 = the original specification.

Σi +1 = Σi if Σi is syntactically inconsistent when Ai +1 is added to its seman-
tic specification.

Σi +1 = Σi ∪ {Ai +1} if the resulting specification is syntactically consistent
and Ai is not of the form (ii

i
cv)B .

Σi +1 = Σi ∪ {Ai +1,Bv /x } where x is the alphabetically first variable of the
same type as v that does not appear in Σi ∪ {Ai }, if Σi ∪ {Ai +1} is syntactically consistent and
Ai is of the form (ii

i
cv)B .21

Σ = Σω.

Σ is ω-complete by construction. That Σ is maximal can be seen by noting that if some assertion Ai +1

is not in Σ, then it is because {Ai +1} ∪ Σi is inconsistent. But for any assertion A , if {A } ∪ Σi is incon-
sistent, then {A } ∪ Σ must be inconsistent since Si is a subset of S .

That Σ is syntactically consistent is established if we prove that each Σi is syntactically consistent
since any derivation of a contradiction can involve at most a finite number of premises and every finite set
of assertions contained in Σ is contained in some Σi . We establish the syntactic consistency of each Σi by
induction. Σ0 is consistent by hypothesis. If Σi is consistent, then Σi +1 is obviously consistent if either it is
equal to Σi or it was formed by the addition of some assertion that could be added consistently to Σi .
Hence, the only problematic case occurs when we add (ii

i
cv)B to Σi since we also add an assertion of the

form Bv /x , and it is not obvious that this latter assertion is consistent with the resulting specification.
However if Σi ∪ {ii

i
c(v)B ,Bv /x } is inconsistent, then we can derive P & ¬P from this specification for

some closed assertion P. But by the Deduction Theorem, this implies that we can derive ¬Bv /x from
Σi ∪ {(ii

i
cv)B } by using the TC rule of inference. Since by hypothesis, x does not occur free in Σi or in

hhhhhhhhhhhhhhhhhh
21. If the original specification contains only a finite number of assertions in its semantic specification or if it is specified
using any of the schemata described earlier in this paper, then there is always such a variable. If for some reason, we have
an infinite specification that contains all the variables of a certain type, we can always generate new variables, e. g., by dou-
bling the indices of each variable in the specification.

- 24 -

(ii
i
cv)B , we can generalize and derive (x)¬B which implies that Σi ∪ {(ii

i
cv)B } is not consistent.

This completes the proof of our theorem. Three corollaries follow.

Corollary:
A specification S is syntactically consistent only if it is semantically consistent.

Proof: Immediate given the completeness theorem.

Corollary:
S |=A if and only if S |−A .

Proof: The implication from right to left follows from the Soundness Theorem. Going from left to
right, note that if A is not derivable from S , then S ∪ {¬A } is syntactically consistent by the Deduction
Theorem. Hence, by the Completeness Theorem it has a model, and therefore, it is not the case that S |=A .

Corollary:
S is syntactically total if and only if it is semantically total.

Proof: Immediate given the preceding corollary.

3.5.1. Nonstandard Models

As noted when giving the definition of a trace model, it is impossible to axiomatically force in first
order logic every trace expression variable to denote only finite strings of procedure calls. As a conse-
quence, we must allow models that are unintuitive in that they contain infinite traces. This may have both-
ered some readers, but it can now be seen that the presence of these nonstandard models are of no concern.
As the Soundness Theorem demonstrates, assertions that are provable are valid even if we allow these non-
standard models, and in proving the Completeness Theorem we showed how to build for any consistent
specification a model that does not contain any nonstandard traces. Hence, an assertion is valid if and only
if it is valid in a universe consisting only of "standard" traces.

3.6. Future Research

Future research in the trace method can take various forms. First, the desirability and feasibility of
extending the model to allow, e. g., more nondeterminism in specifications, should be explored. Second,
software as described in [3] for proving specifications consistent and total and for building quick imple-
mentations should be built. A pilot project to develop software support was undertaken at the University of
North Carolina and is being continued at the Naval Research Laboratory. NRL is also developing software
making it easier to use traces by allowing the specifier to communicate in a English-like language. Third,
methods for proving the correctness of implementations and the correctness of programs using modules
must be developed.

ACKNOWLEDGEMENTS

The influence of David Parnas’ work on this paper is obvious. I also wish to thank Karen Dwyer,
Dan Hoffman, Mila Majster, Donald Stanat, and David Weiss for helpful criticism of and earlier draft, and
Mark Nixon for useful conversation along the way. Part of the research for this paper was done under NSF
grant #1-0-110-3276-XA452.

REFERENCES

1. A W. Bartussek and D. L. Parnas, "Using Traces to Write Abstract Specifications for Software
Modules," UNC Report TR 77-012, University of North Carolina, Chapel Hill, N. C. 27514 (1977).

2. C. Chang and H. Keisler, Model Theory, North-Holland, Amsterdam (1977).

3. J. Dixon, J. McLean, and D. Parnas, "Rapid Prototyping by Means of Abstract Module Specifications
Written as Trace Axioms," ACM SIGSOFT Engineering Notes 7 pp. 45-49 (1982).

4. K. G"odel, ""Uber formal unentscheidbare S"atze der Principia mathematica und verwandter Systeme,
I," Monatshefte f"ur Mathematik und Physik 37 pp. 179-198 (1931).

5. J. Guttag and J. Horning, "The Algebraic Specification of Abstract Data Types," Acta Informatica 10
pp. 27-52 (1978).

- 25 -

6. C. Heitmeyer and J. McLean, "Abstract Requirements Specification: A New Approach and its Appli-
cation," IEEE Transactions on Software Engineering 9 pp. 580-589 (1983).

7. C. Heitmeyer and J. McLean, "An Approach to Describing the Functional Requirements of an
Embedded Communications System," NRL Report 8604, Naval Research Laboratory, Washington,
D. C. 20375 (1982).

8. L. Henkin, "The Completeness of First Order Functional Calculus," Journal of Symbolic Logic 14 pp.
159-166 (1949).

9. L. Henkin, J. Monk, and A. Tarski, Cylindric Algebras, Part 1, North-Holland, Amsterdam (1971).

10. B. Liskov and V. Berzins, "An Appraisal of Program Specifications," in Research Directions in
Software Technology, ed P. Wegner, MIT Press, Cambridge, Massachusetts (1979).

11. B. Mates, Elementary Logic, Oxford University Press, New York (1972).

12. J. McLean, "A Formal Foundation For the Trace Method of Software Specification," NRL Report
4874, Naval Research Laboratory, Washington, D. C. 20375 (1982).

13. J. McLean, "A Complete System of Temporal Logic for Specification Schemata", in Logic of Pro-
grams Proceedings 1983, ed. Dexter Kozen, Springer-Verlag, New York (forthcoming).

14. J. Monk Introduction to Set Theory, McGraw-Hill, New York (1969).

15. D. L. Parnas, "On the Criteria to be Used in Decomposing Systems into Modules," Communications
of the ACM 14 pp. 1053-1058 (1972).

16. D. L. Parnas, "The Use of Precise Specifications in the Development of Software," in Information
Processing 77, ed. B. Gilchrist, North-Holland, New York (1977).

17. A. Tarski, "Der Wahrheitsbegriff in den formalisierten Sprachen," Studia Philosophica 1 pp. 261-
405 (1936).

